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Abstract

What are the local and aggregate dynamic effects of regional migration flows? To

address this question, I combine a panel SVAR framework with a shift-share instrument

based on lagged birth rates to analyze the short-, medium-, and long-term impacts of

a 1% increase in migration to U.S. commuting zones. My estimates indicate that these

inflows raise wages and output per worker, with effects peaking between 0.2% and 0.3%

over time. However, the most substantial impact is observed in housing prices, which

reach a long-run level 0.9% higher than pre-shock levels. To assess whether these local

effects translate into significant aggregate outcomes, I examine labor “deportation” and

“relocation” through the prism of a dynamic spatial model that I estimate through

impulse response matching to the empirical findings. The deportation scenario removes

workers unevenly across regions, resulting in a long-term reduction in aggregate output

of 1%. In contrast, the relocation scenario redistributes these workers across other

regions in the country. Although this redistribution does not alter the steady state, it

can lead to a temporary output decline of up to 1%, with recovery times exceeding 50

years, depending on the skill composition of relocated workers.
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1 Introduction

What are the dynamic effects of local migration shocks? Recent fluctuations in internal

migration trends, along with international immigration disproportionately affecting certain

states, have brought greater attention to the effects of regional population inflows on the

broader economy. In spatial models, a larger workforce leads to increases in productiv-

ity through agglomeration economies, all the while congestion forces such as higher rents

make these areas less attractive. However, so far these frameworks have mostly remained

static and therefore offer no insights into how long these productivity gains take to ma-

terialize, specially when compared with short-run increases in housing prices. Moreover,

this literature has placed limited emphasis on aggregate outcomes, despite the fact that the

macroeconomic impact of relocation shocks can vary depending on the regions receiving

migrants.

This paper aims to fill this gap. First, I estimate the dynamic local effects of migration

shocks using a panel SVAR structure at the commuting zone (CZ) level, coupled with an

external instrument. The results consist of structural impulse response functions (IRFs)

that illustrate how variables such as wages, output, and housing prices respond over time

to higher population inflows. Second, I develop a quantitative dynamic spatial model, with

migration frictions as well as productivity spillovers, and use the empirical IRFs to estimate

the structural parameters. Using the calibrated model, I demonstrate how the aggregate

impact of commonly discussed immigration policies varies across the short, medium, and

long term. Specifically, I consider a “deportation” shock that removes a spatially heteroge-

neous share of regional population that corresponds to undocumented immigrants. I then

simulate a “relocation” shock, where that same proportion of workers is moved to other

areas within the US.

To identify the local causal effect of migration inflows, I estimate a panel SVAR-IV model

using shift-share instruments derived from lagged birth rates. This vector autoregression

structure enables me to capture the intertemporal relationships between population inflows

and other key variables. As a result, I can account not only for the direct impact of migration

inflows on economic outcomes but also for the potential feedback effect, where favorable

economic conditions attract additional future migration. To address potential simultaneity

bias arising from contemporaneous productivity shocks that could drive migration into

the area, I employ an instrumental variable approach. After estimating the reduced-form

panel VAR, I apply the methodology of Stock and Watson (2018) to identify the impact

of structural market size shocks using an external instrument. Specifically, for each CZ,

I predict population inflows using a Bartik-style instrument: the ’pull’ factor are lagged

migration shares at the destination and the ’push’ factor is the lagged birth rate of each

origin, following a similar approach to Karahan, Pugsley and Şahin (2019).

The exclusion restriction of this instrument relies on the assumption that birth rates in
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the areas sending migrants are uncorrelated with destination-specific shocks 25 years later.

Following the strategy used in the immigration literature, such as in Altonji and Card (1991)

and Card (2001), the weights of the shift-share instrument correspond to the lagged share

of migrants originating from each area. However, unlike most studies in this field, I use

migration patterns from the previous year rather than a fixed pre-period. Although these

shares may be endogenous, I follow Borusyak, Hull and Jaravel (2022) and estimate the IV at

the ’shock level’—in this case, the level of the county sending migrants. This approach allows

me to leverage the exogeneity of past birth rates while constructing a stronger instrument

with inflow shares that more accurately predict current migration inflows. Additionally,

it enables me to calculate the appropriate standard errors for inference, thereby avoiding

the limitations of conventional shift-share methods discussed by Adao, Kolesár and Morales

(2019).

At the CZ level, a 1% increase in migration inflows leads to higher future in-migration,

raises wages and output, stimulates establishment entry, and drives up housing prices. The

shock initially produces an immediate effect on all variables, which intensifies over time.

Specifically, productivity proxies such as output and wages reach a peak between 0.15% and

0.25% above pre-shock levels after four years. Simultaneously, some workers begin to leave

the area, likely in response to congestion forces, as indicated by a 1.1% rise in housing prices.

However, these cumulative effects then decrease slightly from their peak and stabilize at a

higher permanent level. For example, housing prices eventually settle at a new level that is

0.9% above pre-shock values but below the four-year peak.

I also provide further evidence to better understand the mechanisms driving the baseline

results. First, I split the CZs in my sample according to population per square mile and

re-estimate the SVAR for each group. The new IRFs show that, although the magnitude

of the estimate increases with CZ density, its variance does so as well, which suggests the

net effect from the agglomeration and congestion externalities becomes more ambiguous.

Furthermore, since the instrument is positively correlated with income per capita among

migrants, a simple composition effect could be behind the rise in wages. Nevertheless, when

I look at the response of wages within narrowly defined sectors with homogeneous low-skill

requirements, I find that all of them experience a sustained increase.

These results underscore the importance of estimating the dynamic effects of such a

shock. First, the shape of the IRF reveals the relative significance of different forces as time

passes. In this sense, the smaller long-term productivity response, compared to the medium

term, suggests that congestion externalities outweigh agglomeration economies after four

years, whereas the reverse is true in the short and medium term. Second, using a dynamic

model that includes lagged variables allows me to control for persistent unobserved shocks

from the past, which could otherwise bias the IV estimates. Finally, examining the effect

of population flows over different time horizons through the lens of a theoretical model can
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help identify distinct structural elasticities. For instance, housing prices in the short term

are largely determined by the housing supply elasticity, while in the long term, they depend

on the interaction between this and other factors, such as the elasticity of migration.

Given these results, how does aggregate productivity react to local migration shocks?

Inherently, this question connects heterogeneous treatments at the local level to aggregate

outcomes and answering it requires a theoretical framework. I therefore develop a continuous

time spatial economic model in which forward looking workers choose where to live each

period, subject to mobility costs on the intensive and extensive margin. Furthermore, the

model includes static agglomeration externalities à la Romer (1990) as well as local dynamic

spillovers similar to the ones in Peters (2022), where a larger local mass of firms in a region

decreases the cost of entry in the future. On the other hand, endogenously congested

amenities as well as a housing sector with fixed land make locations less attractive as

population increases. Mobility frictions slow the spatial redistribution of labor, and, when

combined with intertemporal productivity spillovers, create conditions in which migration

shocks can have persistent impacts that vary over time on variables like wages and housing

prices. This is what we observe in the empirical IRFs.

To discipline the main parameters of the model I use impulse response matching. In

particular, I simulate the transition path of the economy implied by the empirical birth

rates in the shift-share instrument. I then replicate the estimation described above using

the simulated data to obtain model generated IRFs. The parameter estimates I obtain are

the ones that minimize the distance between these simulated moments and the empirical

values. This guarantees the model generates the correct causal effect of migration inflows

on variables such as housing prices and output per worker. Other parameters are estimated

using calibration by targeting cross-sectional evidence with moments generated in the initial

steady-state.

I then use the calibrated model to assess the aggregate impact of local migration shocks.

To do so, I construct two policy counterfactuals. The first is a “deportation” shock: using

the empirical geographical distribution of undocumented migrants in the U.S., this scenario

removes a segment of the workforce from the economy. It is essential to emphasize that

these are region-specific shocks, with deportation shares varying across regions, representing

between 3% and 5% of local populations. The areas directly affected by the shock experience

higher amenities, lower housing prices, and real incomes that are, on average, 7.5% higher.

As a result, these locations attract workers from other regions, with increased inflows and

reduced outflows. However, the overall reduction in the workforce leads to a long-term

decline in the number of firms and total output by 6% and 2%, respectively, across all

regions. These dynamics ultimately cause aggregate output per capita to decline to a new

steady state that is 1% below the initial level. The magnitude of these effects depends on the

skill composition of the deported workers, with potentially greater impacts if higher-skilled
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workers are removed.

In contrast, the second policy scenario involves a ”relocation” shock, in which the same

population is redistributed uniformly across other regions. A similar policy has been im-

plemented recently at a local level, with some states relocating undocumented immigrants

to different regions within the country (Goodman et al. (2024)). The results in this paper

indicate that, if applied on a national scale, such a policy would produce no long-term ef-

fects, as the economy would eventually converge back to the original steady state through

migration flows. However, in the short term, the shock would create significant impacts,

including a 1% increase in housing prices across all locations and an immediate 9% rise in

real incomes in areas losing workers. Moreover, the reduction in the mass of firms by more

than 2% in these regions would lead to a regional output decline of between 2% and 8%,

depending on the skill composition of the relocated households. At the aggregate level, re-

locating low-skilled households results in a slight increase in output per capita. Conversely,

redistributing high-skilled workers leads to a drop in output per worker of over 1%, with

recovery taking more than 50 years.

Related literature This paper follows previous research on market size, labor mobility,

and economic growth. From a theoretical perspective, Duranton and Puga (2004) summa-

rize the main mechanisms driving agglomeration economies. The first of these is sharing :

producers in larger cities can divide the fixed cost of indivisible inputs as well as the gains

of specialization. Another channel is matching, as a larger labor force increases both the

quantity and quality of firm-worker matches, especially in the presence of mismatching

costs due to skill heterogeneity. Finally learning from a larger and more diverse market

raises productivity through knowledge creation, diffusion, and accumulation (Lucas, 1988;

Moretti, 2004; Crews, 2023). The relevance of each mechanism, and ultimately the effect

of immigration, depends on the time frame. For example, a fixed capital stock in the short

run causes wages to drop in the immediate years following worker inflows (Borjas, 2013).

By estimating a dynamic model over several years, the following analysis determines how

the relative importance of each mechanism evolves.

Numerous empirical studies estimate the response to labor inflows and obtain ambiguous

results. Using previous immigration shares as an instrument, some papers find a negative

effect on native employment and wages (Altonji and Card, 1991; Card, 2001). Similarly,

the wage elasticities estimated by Borjas (2003) imply immigration to the US in the 1980s

and 1990s reduced wages by 3.2%. Nevertheless, as the survey by Edo (2019) points out,

the estimated impact on wages, employment, and other outcomes depends on the method-

ology, period, and country under study. Some papers have found evidence of agglomeration

economies with positive spillovers on manufacturing productivity (Greenstone, Hornbeck

and Moretti, 2010; Kline and Moretti, 2014) as well as employment opportunities (Moretti,

2010). Most of these studies estimate a single elasticity for multiple periods and adopt
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reduced-form strategies that do not account for the intertemporal correlation between mi-

gration and other economic measures.

To incorporate these interactions, this paper models local population inflows and out-

flows, along with other outcome variables, using a panel VAR structure. Barcellos (2010)

adopted this approach in her analysis of migration between US states whereas Boubtane,

Coulibaly and Rault (2013) did so for 22 OECD countries. To identify the dynamic response

to population inflow shocks, these studies rely on ordering assumptions and Cholesky decom-

positions of the variance-covariance matrix. I avoid making such assumptions by estimating

the coefficients of interest using an IV strategy as described by Stock and Watson (2018)

and applied in the fiscal multipliers (Mertens and Ravn, 2013) as well as the monetary

policy literature (Gertler and Karadi, 2015).

The use of exogenous variation resembles the analysis of previous authors leveraging

historical episodes to estimate the effect of population movements. Notable examples in-

clude Peters (2022) and Burchardi and Hassan (2013), both of whom examine the impact of

post-WWII German migrants who resettled in West Germany. However, their estimation

relies on a single event, whereas the SVAR-IV exploits changes across time. To accomplish

this, I use a shift-share instrument (estimated at the shock level as stated in Borusyak, Hull

and Jaravel (2022)) based on migration shares and lagged birthrates. This follows a similar

identification strategy as the one proposed by previous work that estimates the effect of

increasing labor supply (Shimer, 2001; Karahan, Pugsley and Şahin, 2019).

The methodology in this paper identifies exogenous shocks that influence local in-

migration flows to estimate the latter’s effect on economic conditions. In this sense, it

closely resembles the Local Projection IV (LP-IV) used in Howard (2020), which uses a

dynamic model along with an Altonji and Card (1991)-style instrument to determine the

effect of migration on unemployment. The paper finds that unemployment falls whereas

the employment-to-population ratio rises. However, it differs from the analysis I carry out

in several ways. First, its econometric approach does not account for the interaction be-

tween migration, unemployment, and other relevant variables such as wages, output, and

establishments, which is an element the VAR structure allows me to consider. Furthermore,

it only estimates the effect on labor market outcomes, whereas this paper determines the

response on a set of comprehensive economic measures. Finally, I estimate the impact on

CZs which cover a broader geographical sample than MSAs, which are only representative

of urban economies.

This paper also follows previous work on the implications of local dynamics for aggregate

outcomes. Davis, Fisher and Whited (2014) study the contribution of agglomeration in

cities to aggregate productivity growth through the lens of a structurally estimated spatial

model. In their framework, local output per worker depends positively on output density.

Crews (2023) further endogenizes these externalities in a heterogeneous agents model: as the
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aggregate stock of skill in a city increases, the rate of individual human capital accumulation

rises as well1. On the other hand, Peters (2022) proposes a different mechanism by relating

current fixed costs of entry to past market size, creating dynamic spillovers. He embeds this

in a model with variety gains, as in Romer (1990), and uses it to examine the scale effects

on productivity in the context of postwar Germany.

The rest of the paper is structured as follows. The next section explains the SVAR-

IV methodology, as well as the shock-level shift-share instrument I use to estimate the

effects of migration. Then, in Section 3, I analyze the structural impulse responses to a 1%

increase in inflows and discuss further supporting evidence. Section 4 develops the formal

framework relating the local evidence to aggregate outcomes, whereas Section 5 implements

the structural estimation of the model parameters. Finally Section 6 implements the policy

counterfactuals and Section 7 concludes.

2 Econometric Model

2.1 Panel SVAR-IV Model

The first part of this paper seeks to determine the dynamic effect of population inflows

on local economies. Specifically, for any CZ i and year t, I determine the impact total

in-migration from within the US mit has on the population flow dynamics in the years

following the initial shock. In other words, I estimate the effect on future in- and out-

migration, mit and oit respectively, since the arrival of new residents could drive native

workers to leave as well as more immigrants to relocate in the future. This could be due, in

part, to changes in employment opportunities. Consequently, I also study the effect on the

employment-to-population ratio lit to establish if new workers compete for the same jobs

as previous employees or if their arrival leads to additional opportunities.

Another relevant labor market outcome is the average wage wit within a CZ, as an

in-migration shock can increase labor supply and could therefore lead to lower wages. On

the contrary, the presence of agglomeration economies can make labor productivity increase

with larger market size. These two opposing effects can lead to different net impacts across

different timelines. In addition to wages, I also estimate the effect on output per worker

yit, another measure of aggregate productivity, as well as on the number of establishments

per worker kit. Through the lens of an expanding variety model, a larger workforce leads

to higher entry, which in turn increases productivity. Thus, accounting for establishments

will allow me to test the predictions of such frameworks.

Finally, I determine the response of housing prices hpit, a major component of house-

holds’ local expenditures. As the population of an area increases, these values should

1Previous papers in the growth literature suggested this mechanism (Uzawa, 1965; Lucas, 1988), albeit
at an aggregate level in a representative agent economy.
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increase in the short run, when the good is in fixed supply. This would in turn act as

a congestion force, counteracting the agglomeration externalities and therefore leading to

different effects across timelines. Moreover, recent trends in real estate prices, especially in

markets experiencing a high inflow of migrants, have prompted a policy discussion aimed

at increasing the housing supply. Consequently, to study these counterfactual policies we

first need to estimate the effect of population increases on real estate values.

To estimate these effects, the first step is to model these variables using a panel SVAR

structure, similar to the one in Boubtane, Coulibaly and Rault (2013), which accounts

for the reciprocal relation between population flows and economic performance in a given

geographical area. In this sense, define a vector of stationary observables Yit and assume it

follows a linear process2:

A · Yit =

p∑
l=1

αl · Yit−l + εit (1)

where A is a non-singular matrix and αl is a 7× 7p matrix which, along with A, describes

the relation between present and past values of Yit. Furthermore, εit is a vector of structural

innovations uncorrelated across localities and time, with E[εit] = 0 and E[εitε
′
it] = I. The

reduced form of the model above is given by:

Yit =

p∑
l=1

δl · Yit−l +Bεit (2)

where B = A−1 and δ1 = A−1α1.

Let uit = Bεit be the reduced-form residuals. After estimating equation (2) we need

to identify B to construct impulse responses to structural migration shocks εmit . Typically,

when making timing assumptions, we would rely on the Cholesky decomposition of Σ, the

covariance matrix of eit, to achieve this. This is the approach Boubtane, Coulibaly and

Rault (2013) adopt in their analysis of OECD immigration. However, since I am only

interested in the response to immigration shocks, and given the ordering of variables in

Yit, I only need to identify the first column bm. By instead using instrumental variables as

detailed in Stock and Watson (2018), I avoid imposing any timing or sign restrictions.

To see this, rewrite the reduced-form residuals of the jth VAR equation as a function of

the structural migration εmit and non-migration ε−mit shocks:

ujit = bmj · εmit + b′j,2:5 · ε−mit (3)

where bmj corresponds to the first coefficient in the jth row of matrix B. If we use a unit-

effect normalization, so that bmm = 1, we can substitute εmit with the residuals from the

2This includes all the variables discussed above so that Yit = [∆mit,∆oit,∆yit,∆wit,∆lit,∆kit,∆hpit]
′.
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migration equation and obtain:

ujit = bmj · umit + ejit (4)

where ejit is a linear combination of the non-migration structural shocks ε−mit .

As Stock and Watson (2018) note, although the residuals ujit are unobserved, to estimate

bmj we can use each equation in the reduced-form VAR in (2) to rewrite equation (4) as3:

Y j
it = bmj ·mit +

p∑
l=1

Γjl · Yit−l + ejit (5)

where Y j
it is the jth entry in Yit. Since in-migration rates mit are correlated with non-

migration shocks we have E[mm
it e

j
it] 6= 0. Consequently, estimating the coefficients of interest

requires a vector of instruments zit that satisfies the relevance and exclusion conditions,

E[εmit zit] 6= 0 & E[ε−mit zit] = 0 respectively. With these instruments, I can estimate equation

(5) using two-stage least squares, recover column bm and finally compute the dynamic

response of all the local economic variables in Yit to a structural population inflow shock

εmit .

2.2 Shift-Share Instruments

To identify the effect of structural market size shocks using the methodology above, I

construct a set of Altonji and Card (1991)-style instruments zgit, based on migration shares

sint and demographic shocks gnt:

zgit =
∑
n

sint · gnt (6)

where n is the county from which migrants originate. To see how this instrument captures

variation in market size, note that we can decompose population growth ∆ lnNit as:

∆ lnNit ≈
∆Nit−1

Nit−1
+

∆bnetit

Nit−1
+
∑
n

(
m̃int−1

Nit−1
· ∆m̃int

m̃int−1

)
︸ ︷︷ ︸

In-migration rate ∆mit

− ∆õit
Nit−1

(7)

where bnetit is births net of deaths, m̃int is the total flow of migrants coming from n to i and

õit is the total outflow of individuals from i.

We can see that the third term in equation (7) is the in-migration rate, which is decom-

posed into inflow shares and growth rates. I use the former to construct the instrument so

that sint = m̃int−1/Nit−1. This is the “pull” factor of migration: since individuals tend to

move to places that previously received migrants coming from the same area, the share sint

3From (2) we know ujit = Y jit −
∑p
l=1 δ

j
l · Yit−l − νji − νjt . Use this in (4) and define Γjl = δjl − bmj δ

m
l to

obtain (5).
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“pulls” households from n to i. On the other hand, the “push” factor will be the demo-

graphic shocks that produce an outflow from n and proxy for the growth rates within the

sum in equation (7). To this end, and following a similar strategy to Karahan, Pugsley and

Şahin (2019) and Shimer (2001), I set gnt equal to the 25-year lags of birth rates in county

n.

Note that, unlike previous migration studies that use this type of instrument, the shares

are lagged by one year instead of multiple periods. Although this produces a stronger instru-

ment it also introduces endogeneity since the predictable element of current productivity

could influence past migration shares. Nevertheless, I follow Borusyak, Hull and Jaravel

(2022) and estimate the IV regression at the shock-level, which in this case is at the county

of origin level. Thus for each dependent variable Y j
it in the VAR, instead of estimating

equation (5), I use the following specification:

Ȳ j⊥
nt = bmj · m̄⊥nt + ēj⊥nt (8)

where, for every variable x, we have x⊥ is the residual from a regression of xit on the original

controls, including the lagged values of Y j
it, and x̄⊥nt =

∑
i

sint
snt

x⊥it .

In addition to recovering the same coefficient of interest bjm, this specification has other

benefits. On the one hand, it recovers the appropriate standard errors and therefore avoids

the issues with classic shift-share designs shown in Adao, Kolesár and Morales (2019),

such as the potential correlation between residuals and instruments across observations.

Furthermore, this method relies on the exogeneity of the shock gnt and not that of sint, which

is why I can use migration shares from the previous period to strengthen the instrument.

To satisfy this exclusion restriction, birth rates 25 years ago in counties sending migrants

need to be exogenous to unobservable variables affecting the current dependent variables in

destinations. Specifically, following Borusyak, Hull and Jaravel (2022), ējnt is the average

unobserved shock to variable j (for example wages) across CZs that are mostly receiving mi-

grants from n. Lagged birth rates need to be uncorrelated with these unobservable shocks.

This would be violated if, for example, individuals making fertility decisions could predict

economic conditions 25 years in the future in the counties receiving the most migrants after

that time interval. Aggregate shocks, such as booms and recessions, as well as perma-

nent productivity differences, are controlled for by time fixed effects and using differenced

variables respectively.

2.3 Data

The IRS provides annual Statistics of Income (SOI), which include county-to-county popu-

lation flows from 1990 to 2018. Specifically, for any origin i and destination j in year t, we

observe the number of individual income tax returns that changed addresses from i in t− 1
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to j in t. This dataset also includes the number of exemptions as well as the total adjusted

gross income associated with those returns. Following IRS guidance, the first variable prox-

ies for the number of households that move from one county to another whereas the second

represents the number of individuals that do so. Consequently, I define migration inflows

mit as the total exemption inflow from counties within the US. I also define outflows oit in

a similar manner.

The BEA also provides GDP, wages, and employment at the county level, which are some

of the variables in Yit
4. This data is available from 2001 to 2019. Furthermore, I obtain

the number of establishments for each county from the Business Dynamics Statistics (BDS)

produced by the Census Bureau. To aggregate all these measures at the CZ level, I use the

USDA ERS definitions from 2000, which map each county to one of 709 CZs. As described in

Autor and Dorn (2013), these geographic areas group counties with strong commuting ties,

and therefore constitute a better unit of analysis for studying the local effects of migration.

Furthermore, unlike metropolitan areas that only cover certain locations, CZs encompass

the entire continental US. Finally, to find housing price growth ∆hpit, I use the FHFA house

price index, which is available at the county level. Therefore, I use the same delineation

of CZs to compute an average housing index growth rate, weighted by the population of

each county within a commuting zone. Table 1 shows the descriptive statistics for these

variables.

Table 1 Descriptive Statistics

Commuting Zones Mean St. Dev. 10% 50% 90%

Inflow Rate (%) 1.61 1.25 0.60 1.37 2.77
Outflow Rate (%) 1.63 1.39 0.75 1.48 2.56
Net Immigration Rate (%) -0.02 1.27 -0.49 -0.07 0.48
Employment-to-population 0.42 0.07 0.33 0.42 0.52
GDP per worker (000’s) 98.85 36.02 75.44 91.68 124.06
Average Wage (000’s) 37.55 6.89 30.70 36.15 45.85

Note: Sample consists of 660 commuting zones within the continental US (excluding

Alaska) and years 2002-2018.

To construct the instrument I need birth rates at the county level. I obtain this from

the CDC’s National Vital Statistics microdata, which provides details on each birth during

the calendar year5. Once I build the instrument I observe how it correlates with migrant

income. The left panel of Figure 1 shows how the instrument is positively correlated with

the absolute income per capita among households arriving to CZs. In other words, this

4GDP figures correspond to CAGDP2 whereas the remaining BEA variables come from the Economic
Profile for counties (CAINC30)

5This data is publicly available for all counties until 1988. From 1989 onwards, I only have the number
of births for counties with a population over 100,000 (which corresponds to 500 counties). Consequently, I
impute the missing births using the average share (out of all state births) for each county for previous years.
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suggest the “push” and “pull” factors are associated with high income migration. However,

when we control for the average wage at the destination this relationship becomes flatter,

as evidenced by the right panel of the same figure.

Figure 1. Migrant Income & Shift-share Instrument

(a) Migrant income (absolute) & instrument (b) Migrant income (relative) & instrument

Note: Each figure is a binned scatter plot with 100 bins. Controls for year and commuting zone fixed

effects.

3 Empirical Results

The first subsection estimates the SVAR-IV model described above on the entire sample.

The result is a set of structural impulse responses that show the evolution of local economies

after a 1% increase in the migration rate. The remaining parts of this section delve deeper

into these effects by studying the heterogeneity across different types of commuting zones

as well as the impact on wages in several service industries.

3.1 Baseline SVAR-IV

The shift-share structure of the instrument allows any type of shock at the origin county level

gnt that is exogenous with current economic conditions. Consequently, I compare lagged

birth rates with other demographic “push” factors in Table 2. The first is the total outflow

from county n: note from equation (7), this effectively replaces the specific migration flow

from n to i with the total number of people leaving n. This explains why this county-level

shock produces a stronger instrument than the other two, with an F-statistic of 81.966 when

combined with the migration-to-population shares found in equation (7). Nevertheless, this

variable is the least likely to be uncorrelated with current unobservable economic shocks

affecting destinations.

6All the first stage results, including the F-statistic come from the shock-level regression developed by
Borusyak, Hull and Jaravel (2022).
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Table 2 Shock-level IV First Stage

∆mit ∆mit ∆mit ∆mit ∆mit ∆mit

(1) (2) (3) (4) (5) (6)

zoutflow
it 74.90*** 190.21***

(8.27) (39.97)

zpop. growth
it 269.63*** 12484.44*

(67.39) (4974.16)

z
birth rate (25y ago)
it 0.31* 26.12***

(0.12) (6.58)

# of destination-years 8,232 8,232 8,232 8,232 8,232 8,232
# of origin-years 11,241 11,241 11,357 11,357 11,357 11,357
F-stat 81.960 22.642 16.006 6.299 6.193 15.759

Shares relative to total migration X X X
Shares relative to total population X X X

Note: Robust standard errors clustered at the originating county level in parentheses; ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001; All regressions control for the lagged values of the

variables in Yit and contain time fixed effects. Year range is 2002-2018. For each shock (total

outflow, population growth and lagged birth rate), this table reports two sets of first stage

results as a robustness check. The first uses an instrument based on the share of migration

from n to i relative to total migration m̃int−1/mit−1. The second is the migration-to-

population share m̃int−1/Nit−1.

Another county level “push” variable we can use is the total population growth rate in

origin n. As column (4) in Table 2 shows, the resulting instrument is highly correlated with

in-migration growth, with the highest coefficient among all three shocks. The increasing

population in origin counties produces a higher outflow that gets allocated according to

the migration shares. Nevertheless, its F-statistic of approximately 6.3 makes this a weak

instrument. Furthermore, although total population growth is more likely to satisfy the

exclusion restriction than total outflow, it can still suffer from endogeneity as it is not a

lagged variable.

Finally, Table 2 also reports the first stage for the instrument that uses lagged birth

rates, which is the one I use to compute the baseline IRFs later in this paper. As column

(6) shows, as zbirthit increases so does the growth rate of migration inflows. Furthermore,

this coefficient is statistically significant and possesses an F-statistic of 15.76. These results,

along with the arguments provided in the previous section, make this third instrument the

preferred variable for estimating the response to a structural migration shock.

Indeed, Table 3 shows the results from the two-stage least squares estimation using the

birth rate instruments. Recall these estimates correspond to the first column of matrix B

in equation (2). As such, they identify the initial response of each variable to a migration

inflow shock εmit . In this sense, we can see that outflows initially rise after an increase in

inflows. However, when comparing them with the OLS estimates, we can see the true effect

is lower and statistically not significant. The upward bias could be due to unaccounted

shocks (in the OLS case) that are positively correlated with both inflows and outflows,
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Table 3 Shock-Level SSIV

∆oit ∆yit ∆wit ∆lit ∆kit ∆hpit
OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆mit 0.516∗∗∗ 0.123 0.001 0.141∗ 0.005∗∗∗ 0.091∗∗ 0.005∗∗∗ 0.125∗∗∗ -0.002 -0.117∗∗ 0.004∗∗ 0.535∗∗∗

(0.038) (0.174) (0.003) (0.064) (0.001) (0.029) (0.001) (0.036) (0.001) (0.036) (0.001) (0.144)

# of destination-years 10,258 8,232 10,258 8,232 10,258 8,232 10,258 8,232 10,258 8,232 10,258 8,232
# of origin-years 11,357 11,357 11,357 11,357 11,357 11,357

Note: Robust standard errors clustered at the originating county level in parentheses; ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001; All regressions control for the lagged values of the

variables in Yit and contain time fixed effects. Year range is 2002-2018.

such as shifts in the local production process that benefit workers from other counties who

replace established residents.

On the other hand, the contemporaneous response of output and wages is statistically

significant and higher when using the instrument as seen in columns (4) and (6). While

GDP per worker increases by 0.14%, average salaries do so by 0.09%, which suggests the

1% rise of in-migration mostly represents a demand shock that is passed through from

the goods to the labor market. Additionally, the agglomeration externalities discussed in

the introduction could be present upon impact. These mechanisms would also explain

the rise in employment of 0.13% in column (8). Unobserved variables, such as changes

in industrial composition that benefit native residents over incoming migrants while still

increasing productivity, could be driving the downward bias in the OLS measures.

Finally, the number of establishments per worker drops by −0.12% while housing prices

experience a rise of 0.54%, the highest increase of all 7 variables. Thus existing establish-

ments absorb the arrival of new workers by creating new positions since the employment-

to-population rises as we saw above. On the other hand, the direction and magnitude of the

real estate response reveal a potential congestion effect that could counteract the demand

shock driving wage and productivity growth in the medium to long run. To evaluate this,

we now study the structural impulse responses.

Figure 2. Cumulative IRFs for migration flows

Note: The red line represents the cumulative impulse response. The blue shade indicates a 90%

confidence level. Standard errors are generated by Monte-Carlo with 200 repetitions.
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After a 1% increase in the migration rate, the net inflow of commuting zones increases

and remains high after several years. Figure 2 decomposes this effect into inflows and

outflows following the initial shock. On the one hand, more people leave the area even after

8 years. However, this is only 0.3% higher than it was before the first arrival. On the other

hand, inflows permanently increase by 0.5%. Thus, although some workers decide to move

from the CZ, maybe because the shock negatively impacts their salaries and employment

prospects, enough individuals decide to move into the area to maintain a positive net inflow.

It is important to note that the cumulative effect of in-migration is lower than the initial

rise. As the population suddenly increases, this could hurt certain amenities (such as long-

term residential costs as we will see later), which makes the destination less attractive to

future migrants so that part of the initial shock fades out.

Figure 3. Cumulative IRFs for economic variables

Note: The red line represents the cumulative impulse response. The blue shade indicates a 90%

confidence level. Standard errors are generated by Monte-Carlo with 200 repetitions.

Since net inflows remain positive, the local market size continues to rise and therefore

output and wages continue to increase as a response to surging demand. This occurs until

they reach their peak between 3 and 4 years after the shock, as the top two panels of Figure

3 show. Notice all variables in the figure experience a medium run effect within the same

time frame, as employment-to-population grows by 0.23% and the number of establishments

per worker drops by 0.2%. During this time firms hire an increasing number of workers to
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Figure 4. Cumulative IRFs for economic variables

Note: The red line represents the cumulative impulse response. The blue shade indi-

cates a 90% confidence level. Standard errors are generated by Monte-Carlo with 200

repetitions.

meet demand, but this is also the period when longer-term agglomeration externalities, such

as those described in Duranton and Puga (2004), can start affecting productivity.

Nevertheless, housing prices also grow in the medium term, exerting pressure on the

budget constraint of residents. The cumulative impulse response in Figure 4 shows how

these values are 1% higher once they reach their peak. This is a much larger effect than

that of GDP per worker, which only grew by 0.2% in the same period. Consequently,

newer migrants are discouraged from moving into the CZ and inflows fall as we saw before.

The response of real estate values can also be a proxy for other unobservable negative

externalities that also increase with population, such as traffic and pollution.

These are examples of the congestion forces that avoid a sustained rise in the in-

migration rate. However, as time passes several factors can alleviate their negative effects.

In the case of housing, growth in supply and new constructions can reduce the pressure

on prices. This could be why we see a slight decline in Figure 4, after which values sta-

bilize. Furthermore, since net inflows decreased from their initial level, at this point, the

population is growing at a smaller rate as well as residential demand.

We can see the same pattern for the other variables in the VAR, with a long-run re-

sponse that is smaller in magnitude than the one after 4 years. Output per worker, average

wages, and the employment-to-population ratio all fall after their peak in Figure 3. Fur-

thermore, the number of establishments rises slightly from its trough. The reason behind

these responses is the same as the one we mentioned above: although the population is

increasing, it is doing so at a lower rate. Presumably, this is the growth rate that balances

agglomeration and congestion externalities. For example, if we consider wages, this is the

market size growth rate at which the increase in demand and supply for labor offset one

another.
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3.2 Further Evidence

The previous results show the importance of studying the dynamic response of jointly

distributed variables, as the short-, medium-, and long-run effects all differ. Now I explore

whether these effects are heterogeneous across different types of CZs and industries, and if

so what this reveals regarding the underlying mechanisms.

Figure 5. CIRFs for low and medium density CZs

Note: The red line represents the cumulative impulse response. The blue shade indicates a 90%

confidence level. Standard errors are generated by Monte-Carlo with 200 repetitions.

First, we can find the density of each CZ and determine whether the local effect changes

depending on this factor. Specifically, I compute the average population for each zone

throughout the years and classify each on whether they are in the bottom, medium or top

third of the density distribution. I then re-estimate the SVAR-IV model specified above for

each of these groups separately. The reason different densities could produce heterogeneous

responses is the differential relevance of congestion and agglomeration forces. Workers in

New York City interact with each other more frequently than those in Phoenix, where land

is less densely populated, which facilitates the human capital externalities that Lucas (1988)

described. Nevertheless, these areas also experience higher congestion, and therefore the

net effect of migration shocks is ambiguous.

When we look at the plots by density in Figure 5 we can see the response in medium-

density CZs is higher in magnitude than that in areas with a low population by square

17



mile. The average wage, for example, reaches a peak that is 0.4% higher in the former

whereas in the latter it only grows by 0.05%. This difference in magnitude suggests the

agglomeration externalities that drive productivity increases are more prevalent in denser

areas. One such mechanism is the acceleration of human capital accumulation in cities

explored in Crews (2023). Another is misallocation: in sparse markets, it is less likely

for workers with particular skills to supply their labor in the industry where they possess

a comparative advantage. However, as the right plots in the figure show, the standard

errors become wider with density. This could be due to congestion effects that mitigate the

agglomeration externalities.

Figure 6. CIRFs for wages across NAICs sectors

Note: The red line represents the cumulative impulse response. The blue shade indicates a 90%

confidence level. Standard errors are generated by Monte-Carlo with 200 repetitions.

Recall from Figure 1 that migrant income is positively correlated with the instrument.

Since the exogenous variation is coming from high-income migrants, the baseline results in

Figure 3, and especially the response of wages, could be due to a composition effect. To

test this I estimate the path of wages after the shock within industries with homogeneous

low-skill requirements. If we observe a change in these salaries, we can conclude the impact

of in-migration is broad-based. To carry this out I select a set of 3-digit NAIC sectors

and add each of their average wages to the VAR to re-estimate the model with 8 variables
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instead of 77. I then plot the impulse response of each wage in Figure 6.

The results indeed suggest this is more than a composition effect. For reference, recall

from the baseline responses that wages increased between 0.1% to 0.2%. As Figure 6

shows, this increase in salaries affects workers in a diverse set of industries. These include

building construction and repair & maintenance services, where the impact is 0.4% and

0.2% at its peak respectively. Besides raising the average wage due to their higher income,

incoming migrants increase the market size of CZs. This in turn produces a positive demand

shock as well as triggering agglomeration externalities that affect services and non-tradable

production. The following section explores these mechanisms quantitatively through the

lens of a formal framework.

4 Theoretical Model

Increasing migration inflows by 1% produces a positive and sustained change in local eco-

nomic outcomes such as wages, output and housing prices. However, the shape of the effect

across time suggests the interaction between agglomeration and congestion externalities

results in different effects at different intervals. To rationalize these results, this section

develops a theoretical model that will later be disciplined with the structural impulse re-

sponses.

4.1 Environment

Households The economy consists of g ∈ G regions in continuous time t ∈ R+ and a

mass N(t) of workers who discount the future at rate ρ and exit the labor force at regional

rate δ. Furthermore, each period, workers enter the regional markets at an exogenous rate

bg(t) are born. When they are born workers are endowed with a permanent productivity

level z ∈ Ωz, which they draw from an initial distribution z ∼ F (z). They derive utility

from consumption Cg(t) and housing Hg(t), as well as an amenity Dg(t) so that:

Ug(Cg(t), Hg(t)) = Dg(t) · Cg(t)α ·Hg(t)
1−α

where Dg(t) = Dg · Ng(t)
−φ and φ > 0. Note that amenities are decreasing with local

population. This is to account for congestion externalities other than housing such traffic

or the public goods. The consumption good is a CES aggregate from differentiated regional

varieties Cg = (
∑

r c
σ−1
σ

rg )
σ
σ−1 . To buy variety r in g, households need to pay prg(t), whereas

P hg (t) is the price for each unit of housing they consume.

7Each of these industries will have a VAR model associated with it. The Quarterly Census of Employment
and Wages (QCEW) provides average wages at the county-industry level. To aggregate them at the CZ level,
I use the same delineation detailed in Section 2
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Each period thereafter they receive a migration opportunity, whose arrival follows a

Poisson process with rate λ8. This parameter captures the fixed costs associated with

moving to new markets. This is one of the two mobility frictions the model includes. After

receiving the migration opportunity, workers draw a preference shock for each location ξg(t),

which are distributed i.i.d. Frechet with shape parameter ν. The second friction is a flow-

utility cost κgd that the household pays for moving from g to d, where κgd < 1 for g 6= d and

κgg = 1. Thus workers consider the value of living in each location, given these mobility

costs and preference shocks that are both multiplicative and permanent as in Crews (2023).

The mobility decisions of workers, along with their entry and exit from the economy,

will determine the spatial distribution of z at time t dennoted by ψg(z, t). Thus the total

labor available in region g will be given by

Lg(t) = N(t) ·

∫
z∈Ωz

z · ψg(z, t)dz

since workers supply their efficiency units z inelastically in the region g they choose to

live in, in exchange for the local wage Wg(t). Additionally, the population of region g is

determined by Ng(t) = N(t) ·
∫
z∈Ωz

ψg(z, t)dz.

Production Perfectly competitive local producers supply housing services Hg(t) by com-

bining land Tg(t) and labor Lhg (t) as inputs using the following function:

Hg(t) = ΓhTg(t)
θ(Lhg (t))1−θ.

where Γh = θ−θ(1− θ)−(1−θ). I assume land is a fixed factor owned by immobile landlords

who collect rents Rg(t).

Following Romer (1990), production of regional varieties is subject to variety gains.

Each period, under perfect competition, a local firm sources ygd(j, t) at price qg(j, t) from

firm j to produce ygd, the amount of variety g ∈ G it ships to destination d. These inputs

are aggregated following:

ygd(t) =
1

τgd

(∫ Mg(t)

0

ygd(j, t)
ε−1
ε dj

) ε
ε−1

whereMg(t) is the mass of intermediate input producers in g at time t, and τgd represents the

usual iceberg trade cost. Local intermediate producers on the other hand face monopolistic

8I assume that newborns do not receive this migration opportunity and are not subject to the exit
probability.
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competition as well as labor requirements given by

lg(j, t) =
yg(j, t)

Ag
+ Fg(t)

where Ag is the fixed productivity in region g and Fg(t) is the fixed cost in terms of labor

units that firms have to pay. Similar to the discrete time setting in Peters (2022), this

related to the growth rate of the mass of firms as well as the inter-temporal knowledge

elasticity η:

Fg(t) = γM (t) ·Mg(t)
−η (9)

where γM (t) = Ṁg(t)/Mg(t).

4.2 Static Equilibrium

At any point in time t, the state variables for each geography g ∈ G consist of the mass of

producers Mg(t) and the distribution of efficiency units ψg(z, t). We can therefore define a

static equilibrium as follows:

Definition 1. For each g ∈ G, given Mg(t) and ψg(z, t), a static equilibrium in period

t ∈ R+ is a set of prices and allocations for skill {Wg(t), Lg(t)}, consumption imported

from all regions {crg(t), prg(t)}r∈G, intermediate inputs {qg(j, t), ygd(j, t)}j∈Mg(t),d∈G, hous-

ing {Hg(t), P
h
g (t)} as well as land {Tg(t), Rg(t)} such that given prices i) households and

firms behave optimally, ii) allocations clear their respective markets.

Given their place of residence, households decide how much to consume of each region’s

variety with a local price index given by Pg(t) = (
∑

r prg(t)
1−σ)1−σ. Worker z will spend a

constant share of her income vg(z, t) = z ·Wg(t) on consumption goods and housing services.

Since land is fixed the supply of housing services under perfect competition will be:

Hg(t) =

(
P hg (t)

Wg(t)

) 1−θ
θ

· Tg
θ

(10)

On the other hand, local producers decide how much of their output they allocate to

each region (including their own) as well as the demand for local varieties, which will be

yg(j, t) =

(
Qg(t)

qg(j, t)

)ε
Yg(t),

where Yg(t) is the total output of region g and Qg(t) is the price index these firms face.

Intermediate producers take this demand and choose prices and labor so as to charge a

markup over marginal cost qg(j, t) = ε
ε−1 ·

Wg(t)
Ag

, which implies Qg(t) = Mg(t)
1

1−ε ( ε
ε−1 ·

Wg(t)
Ag

).
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Furthermore, free entry determines total labor demand for production in region g:

Lyg(t) =

∫ Mg(t)

0

lg(j, t)dj = Mg(t)Fg(t)ε (11)

Market clearing for labor states demand from the goods and housing sector has to equal

total supply Lg(t). This, along with zero profits and housing market clearing, sets the

total efficiency units in housing production as a constant share of regional labor: Lhg (t) =

(1− θ)(1− α)Lg(t). Total income in region g is Wg(t)Lg(t) and balanced trade implies:

Wg(t)Lg(t) =
∑
d

πgd(t)Wd(t)Ld(t) (12)

where πgd(t) is the share of consumption expenditures in d spent in goods from g. This in

turn is given by:

πgd(t) =

(
τgd ·Qg(t)

)1−σ

∑
i∈G

(
τid ·Qi(t)

)1−σ (13)

Using equilibrium input prices I obtain the price index Pg(t) = Qg(t) · πgg(t)
1

σ−1 as well

as the price of housing units in region g given by:

P hg (t) =

(
(1− α) · Lg(t) · θ

Tg

)θ
·Wg(t) (14)

Combining them with the demand for consumption goods and housing, I derive the flow

utility a worker with productivity level z receives when living in region g:

Ug(z, t) = Dg(t)︸ ︷︷ ︸
Amenities

· z · Γg
ΓU
·
(
πgg(t)

) α
1−σ
·
(
Mg(t)

) α
ε−1

·
(
Lg(t)

)−θ(1−α)

︸ ︷︷ ︸
Real Wage

(15)

where ΓU = ( ε
ε−1)α((1 − α)θ)θ(1−α) and Γg = AαgT

θ(1−α)
g . Note the real wage is a function

of the mass of firms and total efficiency units in the regional market, as well as those in

other localities through the own trade share πgg(t).

4.3 Dynamic Equilibrium and Balanced Growth Path

Now that we defined a static equilibrium for every t we can study the dynamics of the

model, which involves spatial labor reallocation through migration as well as the evolution

of the mass of firms within each region.

The following Hamilton-Jacobi-Bellman (HJB) equation summarizes the household’s
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recursive problem (I derive this equation in Appendix A.1.1):

(δ + ρ)Vg(z, t) = Ug(z, t) + V̇g + λ
∑

imgi(z, t)

[
δgi(z, t)Vi(z, t)− Vg(z, t)

]
(16)

where δgi(z, t) = 1
G · κgi ·mgi(z, t)

−( 1
ν

+1) and the migration shares are given by:

mgd(z, t) =
[κgd · Vd(z, t)]ν∑
i[κgi · Vi(z, t)]ν

(17)

This is the probability that a worker with productivity z moves from region g to d, condi-

tional on having a migration opportunity mediated by λ.

Recall that the distribution of individual productivities ψg(z, t) will determine regional

labor and population. Thus the evolution of these variables will depend on the Kolmogorov

forward equation below (see Appendix A.1.2 for a derivation):

ψ̇g(z, t) = bg(t) ·
Ng(t)

N(t)
· f(z)− δψg(z, t)

− λ

[
(1−mgg(z, t))ψg(z, t)−

∑
i 6=gmig(z, t)ψi(z, t)

]

− ψg(z, t)
Ṅ(t)

N(t)

(18)

Finally, equation (11) establishes a relation between the fixed cost, labor demand and

the mass of firms. Namely, regions with a lower Fg(t) will have a smaller individual labor

requirement for each producer which tends to reduce total demand Lyg(t) in that market.

Although this cost is fixed at any point t, equation (9) states its evolution will depend on

that of the mass of firms Mg(t). By combining both I obtain:

Ṁg(t) =

(
α+ θ(1− α)

ε

)
Lg(t)Mg(t)

η (19)

This differential equation determines how the regional mass of firms changes over time. I

can now define a dynamic equilibrium.

Definition 2. A dynamic equilibrium is i) a value function Vg(z, t), ii) a distribution

ψg(z, t) and iii) migration shares mgd(z, t) for g, d ∈ G, z ∈ Ωz and t ∈ R+, as well as iv)

functions for labor, population and mass of firms {L,N,M} and v) wages {W} such that:

1. M evolves according to equation (19);

2. V and m solve the HJB equation in (16), taking {L,N,M} and {W} as given;
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3. the densities ψ evolve according to the Kolmogorov equation (18) ∀r, g ∈ G, taking

migration decisions as given;

4. given ψ, populations and total skills satisfy the following equations:

Ng(t) = N(t) ·

∫
Ωz

ψg(z, t)dz Lg(t) = N(t) ·

∫
Ωz

z ·ψg(z, t)dz N(t) =
∑
g∈G

Ng(t)

5. the resulting prices and allocations constitute a static equilibrium ∀t ∈ R+.

Balanced Growth Path A balanced growth path (BGP) is a special type of dynamic

equilibrium where all variables grow at a constant rate. To define such a solution, I detrend

each variable x(t) by rewriting it relative to its long-run growth rate along the BGP x(t) =

x̃(t)·eγxt. For all derivations see Appendix A.1.3. The result is a set of detrended equilibrium

conditions.

The first is a differential equation describing the evolution of regional varieties: the

detrended version of equation (19) in terms of growth rates. That is

γM̃g
(t) + γM =

(
α+ θ(1− α)

ε

)
L̃g(t)M̃g(t)

η−1. (20)

From this equation I also find γL = γM (1−η), thereby connecting the growth rate of Mg(t)

and that of Lg(t) along the BGP. I also detrend the HJB in equation (16) to obtain:

(δ + ρ− γv)Ṽg(z, t) = Ũg(z, t) + ∂tṼg(z, t)

+ λ
∑

imgi(z, t)

[
δgi(z, t)Ṽi(z, t)− Ṽg(z, t)

]
,

(21)

where the effective discount rate is now (δ+ρ−γv) with γv = ( α
ε−1−(1−η)(φ+θ(1−α)))γM .

The detrended Kolmogorov forward equation (18) is now:

∂tψ̃g(z, t) = bg(t)
Ñg(t)

Ñ(t)
f(z)− δψ̃g(z, t)

− λ

[
(1−mgg(z, t))ψ̃g(z, t)−

∑
i 6=gmig(z, t)ψ̃i(z, t)

]

−
(
γ̃N (t) + γN

)
ψ̃g(z, t).

(22)

By detrending this equation I find γψ = 0, which implies from the definition of Lg(t), that

labor grows at the same rate as population along the BGP so that γL = γN . The detrended
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versions of these variables are are defined by

Ñg(t) = Ñ(t)

∫
z∈Ωz

ψ̃g(z, t)dz & L̃g(t) = Ñ(t)

∫
z∈Ωz

zψ̃g(z, t)dz.

Using population dynamics, I compute the growth rate of Ñg(t) as a function of regional

birth rates and δ:
˙̃N(t)

Ñ(t)
=

∑
g bg(t) · Ñg(t)

Ñ(t)
− δ − γN (23)

Note that once the overall economy reaches the BGP, all detrended variables x̃(t) are con-

stant so that x̃(t) = x̄ ∀t. I now formally define this type of equilbrium below.

Definition 3. A balanced growth path is a dynamic equilibrium in which population Ng(t)

grows at a constant rate γN across locations, with constant growth rates for all equilibrium

variables and detrended functions {Ṽ ,m, ψ̃} such that:

Vg(z, t) = eγvtV̄g(z)

mig(z, t) = m̄ig(z)

ψg(z, t) = ψ̄g(z)

where {V,m,ψ} solve the dynamic equilibrium, {V̄ , m̄, ψ̄} are the detrended value function,

migration shares and skill distributions at the BGP, γv = ( α
ε−1 − (1− η)(φ+ θ(1− α)))γM

and γN = γM (1− η).

Along the BGP, the detrended HJB (21) becomes:

(δ + ρ− γv)V̄g(z) = Ūg(z) + λ
∑
i

m̄gi(z)

[
δ̄gi(z)V̄i(z)− V̄g(z)

]
(24)

whereas the Kolmogorov equation (22) is now

0 = b̄g
N̄g

N̄
f(z)− (δ + γN )ψ̄g(z)− λ(1− m̄gg(z))ψ̄g(z) + λ

∑
i 6=g

m̄ig(z)ψ̄i(z) (25)

Finally, to find the population growth rate γN , I use the fact that ˙̃N = 0 along the BGP in

equation 23. This implies:

γN =

∑
g b̄g

N̄
− δ (26)

Note that I could also derive this by integrating the BGP Kolmogorov equation (25) over

all z and summing over g, as well as using the fact that along the BGP there is no net

migration.
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4.4 Model Solution

To compute the solution of this model, I adapt the algorithms in Achdou et al. (2022).

This was done in a spatial setting in Crews (2023) to compute the steady state for a

centralized economy. However, since an estimation of the structural parameters through

impulse response matching requires a simulation of dynamic outcomes, I implement a fixed-

point procedure that solves the transition path of the economy as well as a BGP algorithm.

To simplify notation I group all general parameters into Θ and regional fundamentals into

ΘG. The full algorithms are detailed in Appendix B.

5 Structural Estimation

With the framework in the previous section I can study the effects of local migration and

relocation shocks on aggregate outcomes such as output and productivity. To carry this out,

I first estimate the structural parameters so that the model is consistent with the impulse

responses in Section 3.

5.1 Estimation Strategy

The model parametrization includes a tuple of regional fundamentals {Tg, Ag, Dg} as well

as 14 structural parameters: those I set exogenously Θ1 = {α, ρ, σ, ζτ , γL, N̄} and those I

estimate within the simulation

Θ2 = {ε, η, ν, φ, ζm, θ, λ, δ}.

Given a set of parameters I compute the initial and final steady states, as well as the

transition path that results from an exogenous series of regional birth rates {bg(t)} that

take the economy away from the first BGP. This produces a simulated dataset I then use

to replicate the shift-share IV and estimate the SVAR-IV described in Section 2.

Clustering Commuting Zones Solving the theoretical model is time-consuming and

the cost increases dramatically with the number of regions. Therefore I need to reduce this

set from the 660 CZs used in the empirical part to estimate the structural parameters of the

theory. To carry this out, I applied a K-means clustering procedure based on geographical

coordinates and the variables in the VAR.

In particular, for a given number of clusters, I use the dataset with all CZs in 2010

and perform a K-means clustering algorithm where the “features” are the variables in the

empirical VAR as well as the CZ coordinates. This produces a set of clusters containing

CZs that are similar in terms of migration, output and other economic variables, but that

are also geographically close to each other. This rules out, for example, a cluster with some
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CZs in California as well as Florida. I then aggregate the VAR variables at the cluster level

and re-estimate the SVAR-IV to compare the IRF coefficients with the ones in Section 3. I

repeat these steps for a number of clusters ranging from 15 to 100, and choose the grouping

that produces the coefficients closest to the ones in the baseline estimation. The result is

set of 35 CZ-clusters.

Exogenous Parameters I set ρ = 0.1 as in Crews (2023) and σ = 2 following the results

in Boehm, Levchenko and Pandalai-Nayar (2023). I target the average share of personal

consumption expenditures on housing over the time period and set α = 0.89. For the

initial distribution of productivities f(z), I use a truncated Lognormal(µf , σf ) distribution

using the estimates of the mean and coefficient of variation from Huggett, Ventura and

Yaron (2006) to set µf and σf . To identify available land for housing Tg, I use raster data

from the USGS National Land Cover as well as Data Elevation Models. Specifically, for

each county I find the area (in square miles) that does not contain open water, wetlands

or perennial snow as well as with an inclination lower than 15% following architectural

guidelines and Saiz (2010).

I follow Peters (2022) parameterize bilateral trade and migration costs as functions of

distance by setting τgd = (dgd/dmin)ζτ and κgd = (dgd/dmin)ζm , with dgg = dmin. Since CZ

group one or more counties, I can compute the average distance between them. Therefore

I use the 5% quintile of these within-CZ average distances to set dmin = 32mi. Although I

estimate ζm through impulse response matching, I estimate ζτ by regressing bilateral prices

on distance, similar to Castro-Vincenzi et al. (2024).

In particular, I use the Commodity Flow Survey (CFS) datasets from 2012 and 2017,

which provide information on domestic freight shipping within the US. For each shipment

i, I observe its weight and value, as well as the great circle distance di,t between shipment

origin and destination. Thus, since in the model pgd(t) ∝ τgd, I estimate the following

regression:

log pi,t = βp0 + ζτ log(di,t) +Xi,t + εi,t (27)

where pi,m,n,t is the value per pound of the shipment and Xi,t are a set of controls such as

destination, origin and quarter fixed effects. The estimates are reported in Table 5 in the

Appendix and I use the estimate in the column (4).

Finally, I assume the economy is at a BGP in 2002 and set γL to 1.25% by targeting

the average growth rate of the civilian labor force in the 10 years preceding my sample. For

total population I use the sum of wage employment in that year from the sample in Section

2 so that N̄ ≈ 134 mil. workers.

Internal Estimation For a given set Θ2, I estimate the remaining regional fundamentals

{Ag, Dg} by targeting output per worker and population shares in 2002 while solving the
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initial steady state. I use a modified version of Algorithm 1 where I solve for the fixed

point of parameters in addition to endogenous variables. This also allows me to find λ

and δ. I impute the latter by using equation 26 and the birth rates b̄1g observed 25 years

before the first year in my sample. These are the initial elements in the series {bg(t)} I

will use to simulate the transition. On the other hand, to infer the probability of migration

opportunities I target the sum of migration inflows into all regions:∑
g m̄g

N̄︸ ︷︷ ︸
Observed

= λ ·
∑
g

∫ ∑
i 6=g

m̄ig(z) · ψ̄i(z)dz︸ ︷︷ ︸
Model V ariable

(28)

Once this is complete, I compute the second endpoint for the transition: the final BGP. In

terms of parameters, the only difference with the initial steady state is that I use the lagged

birth rates corresponding to the last year of my sample b̄2g.

With both endpoints in hand, I can now use Algorithm 2 to compute the transition

dynamics of the economy. In particular, I leave all parameters constant except birth rates

{bg(t)}, which are the same as the ones I use to build the shift-share instrument. This

results in a panel series of 17 years (including the first and last that I use for the BGP

computation). Note it is unlikely the economy reaches the second steady state after this

period. Therefore, I assume bg(t) = b̄2g for all t thereafter and set the total periods to a

higher number (T = 200).

To estimate Θ2, I follow an impulse response matching procedure. Specifically, I repeat

the internal estimation steps described above for a sequence of parameters in a Sobol grid

and seek to minimize the following objective function:

J = min
Θ2

(Γ̂− Γ(Θ2))′W−1(Γ̂− Γ(Θ2)) (29)

where Γ̂ is a vector with the IRFs estimated using the 35 clusters, Γ(Θ2) are the model

generated IRFs. The weighting matrix W−1 is diagonal and contains the reciprocals of

coefficient variance, similar to Christiano, Eichenbaum and Evans (2005).

5.2 Parameter Estimates

The results from the impulse response matching are displayed in Table 4 and Figure 7 shows

the model fit.
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Table 4 Structural Parameters

Parameter Interpretation Estimate

ε Elasticity of substitution 6.57
η Inter-temporal elasticity 0.83
ν Migration elasticity 3.41
φ Elasticity of amenities 2.90
θ Share of land in housing 0.93
λ Migration Probability 0.01

6 Population and Relocation Shocks

How would aggregate output per worker respond over time if some regions lost a share of

their workers? Although the IRFs in Section 3 show what the effect of migration on local

conditions is, they are not enough to infer the relevance of population flows on aggregate

variables. Therefore, to answer this question, I use the calibrated model. Specifically, I

consider two policy exercises separately. The first is a “deportation” shock that decreases

the total number of workers in the economy by reducing the population in certain areas

while keeping the size of the remaining regions constant. The second one is a “relocation”

shock: instead of maintaining the population of other locations, I increase it by a uniform

share so as to keep the total number of households constant.

An important element of these counterfactuals is that the local population share that is

removed or relocated differs across treated regions so that these local shocks are a geograph-

ically heterogeneous. To calibrate these shares I use the estimates from Passel and Krogstad

(2023) to identify the states with the highest number of undocumented immigrants. I then

match these with one of the 35 clusters in my model and perform the counterfactuals. Con-

sequently, we can think of the first shock as a general deportation of approximately 1% of

the labor force. By region however, this percentage varies from 3% to 5%. On the other

hand, in the second exercise these workers are redistributed to places with a lower incidence

of undocumented immigration, in a similar manner to the transportation of migrants to

sanctuary cities by some states in 2023 (see for example Goodman et al. (2024)).

6.1 Local Deportations

Figure 11 displays the effects of the initial shock. It reveals that remaining residents in

regions directly impacted by the deportation experience less congested amenities and an

average increase in real incomes of 1.8%, after adjusting for prices of consumption goods

and housing services. As these regions become more attractive, more workers choose to move

there, resulting in an immediate 20% increase in gross inflows and a 4% decrease in outflows,

while the opposite trends are observed in non-treated areas. Over time, as households choose

to leave these non-treated regions, their amenities also become less congested.
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Over time, the effects of the initial shock begin to dissipate, and most variables stabilize

at new levels relative to the original steady state. With fewer workers in the economy,

amenities in the long run increase by 2.5%, and real incomes rise by 1%. This aligns with the

long-term effect on housing prices, shown in Figure 9, which exhibit a 1% decrease. Notably,

if the shock were to target high-skilled individuals instead of being uniformly distributed

across the regional productivity distribution ψg(z, t), housing prices would experience a

smaller decline, while real incomes would be higher. Intuitively, such a policy would lower

the average skill level in affected regions, thereby reducing total demand for housing services

and exerting downward pressure on prices.

Local populations also converge to a new steady state that is 1% lower than the level

observed before the policy was implemented. A smaller workforce implies reduced migration

flows, as shown in Figure 11. Additionally, a lower labor supply means fewer firms can cover

the fixed costs of operation, leading to a decrease in the number of available varieties. This

effect is further amplified by the dynamic influence of Mg(t) on fixed costs, as described

in equation (9). Together, these mechanisms contribute to a steady decline in the mass of

firms, illustrated in Figure 9. A similar process unfolds in unaffected areas, where population

loss due to migration outflows also reduces labor and variety levels, ultimately decreasing

output in those regions. Meanwhile, in the regions affected by the shock, migration inflows

gradually increase the variety of goods over time. Despite this, both shocked and untreated

markets converge to a steady-state level of output approximately 2% lower than the original

steady state.

In terms of aggregate effects, the deportation shock results in a long-run decline in output

per worker of 1%, as shown in Figure 10. This new steady state arises because workers exit

local economies without being replaced elsewhere, unlike the ”relocation” shock I explore

later. Consequently, the overall economy is left with a smaller labor supply and, therefore,

fewer varieties, which reduces productivity. This outcome is similar to an inverse version

of the refugee allocation scenario in Peters (2022), where output per worker also rises in

the long run. However, in this case, the effect is driven by agglomeration externalities

across all markets, rather than being limited to the manufacturing sector. Additionally, it

is worth noting the different impacts depending on the type of workers removed. If high-

skilled workers leave, aggregate output per capita immediately decreases to the new level.

By contrast, if the shock removes low-skilled labor, output per capita initially rises, as the

average skill level in the economy increases. Over time, however, the same dynamics that

reduce varieties come into play, though at a slower rate.

6.2 Relocating Workers

How would aggregate productivity react if instead of removing workers they were re-

allocated to other sectors? Effectively, this policy also takes the economy out of its initial
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steady state but does not change the BGP towards which the economy transitions to in the

long-run. Figure 11 shows that, similar to before, regions that lose their population see an

increase of net inflows whereas the opposite is true of areas that receive the initial influx.

Right after the shock, congested amenities and higher housing prices drive migrants back

to areas whose population was relocated. This dynamic continues for 50 years until the

number of workers in each places converges back.

The mass of firms in each region also transition back to the initial steady state, as well

as output. However, unlike population, these variables take longer to converge. The number

of producers is a slow moving variable that follows the differential equation 20. It therefore

takes time to adjust, which is why the initial drop in shocked areas also occurs in a longer

time frame relative to labor.

31



7 Conclusion

This paper studies the dynamic effect of increasing population inflows on local markets.

Most of the previous research on labor mobility and its impact on economic outcomes fo-

cused on either short or long-term responses, but did not consider transitional dynamics. Al-

though some papers address this element, their identification of structural migration shocks

relies on timing assumptions, whereas the analysis above adopts an SVAR-IV approach us-

ing instruments based on weather variations. The results reveal labor productivity, wages

and employment opportunities in urban economies respond positively to a 1% increase in

population inflows.

32



Figure 7. Model Fit

Note: The red line represents the cumulative impulse response (CIRF) estimated from the 35 K-means

clusters. The red shade indicates a 90% confidence level. Standard errors are generated by Monte-Carlo

with 200 repetitions. The blue line is the CIRF estimated by simulating the model with the baseline

parametrization obtained from indirect inference.
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Figure 8. Deportation Shock: Utility and Population Flows

Note: Responses of amenities, real income, and gross migration flows to the “deportation” shock where

heterogeneous regional population shares are removed from the economy. The blue line represents the

response in regions that experience a population reduction (“treated”) whereas the red line represents

the effect in the remaining ones (“untreated”). In both settings, the policy removes a uniform share

across the regional productivity distribution, whereas the bands represent the cases where only the

top 10% (“High z”) or bottom 10% (“Low z”) are removed. Variables xt are plotted relative to their

pre-shock levels x̂t = xt/xpre−shock.
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Figure 9. Deportation Shock: Population, Varieties and Output

Note: Responses of varieties, population, housing prices and output to the “deportation” shock where

heterogeneous regional population shares are removed from the economy. The blue line represents the

response in regions that experience a population reduction (“treated”) whereas the red line represents

the effect in the remaining ones (“untreated”). In both settings, the policy removes a uniform share

across the regional productivity distribution, whereas the bands represent the cases where only the

top 10% (“High z”) or bottom 10% (“Low z”) are removed. Variables xt are plotted relative to their

pre-shock levels x̂t = xt/xpre−shock.
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Figure 10. Deportation Shock: Aggregate Output

Note: Response of aggregate output per worker to the “deportation” shock where heterogeneous re-

gional population shares are removed from the economy. The blue line represents the response when

the shock removes a uniform share across the regional productivity distribution, whereas the bands

represent the cases where only the top 10% (“High z”) or bottom 10% (“Low z”) are removed. Output

per worker is plotted relative to its pre-shock levels x̂t = xt/xpre−shock.
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Figure 11. Relocation Shock: Utility and Population Flows

Note: Responses of amenities, real income, and gross migration inflows to the “deportation” shock

where heterogeneous regional population shares are removed from the economy. The blue line rep-

resents the response in regions that experience a population reduction (“treated”) whereas the red

line represents the effect in the remaining ones (“untreated”). In both settings, the policy removes

a uniform share across the regional productivity distribution, whereas the bands represent the cases

where only the top 10% (“High z”) or bottom 10% (“Low z”) are removed. Variables xt are plotted

relative to their pre-shock levels x̂t = xt/xpre−shock.
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Figure 12. Relocation Shock: Population, Varieties and Output

Note: Responses of varieties, population, housing prices and output to the “deportation” shock where

heterogeneous regional population shares are removed from the economy. The blue line represents the

response in regions that experience a population reduction (“treated”) whereas the red line represents

the effect in the remaining ones (“untreated”). In both settings, the policy removes a uniform share

across the regional productivity distribution, whereas the bands represent the cases where only the

top 10% (“High z”) or bottom 10% (“Low z”) are removed. Variables xt are plotted relative to their

pre-shock levels x̂t = xt/xpre−shock.
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Figure 13. Relocation Shock: Aggregate Output

Note: Response of aggregate output per worker to the “deportation” shock where heterogeneous re-

gional population shares are removed from the economy. The blue line represents the response when

the shock removes a uniform share across the regional productivity distribution, whereas the bands

represent the cases where only the top 10% (“High z”) or bottom 10% (“Low z”) are removed. Output

per worker is plotted relative to its pre-shock levels x̂t = xt/xpre−shock.
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A Theory Appendix

A.1 Dynamic Equilibrium Solution

A.1.1 Derivation of the HJB

Following similar steps to those in Crews (2023) we find the following Bellman in discrete

time:

Vg(z, t) = Ug(z, t) + [(1− ρ)(1− δ)]Et
[
ξ̃(t+ 1)κ̃(t+ 1)Vgt+1(z, t+ 1)

]
The expectation is with respect to the location in the next period since the households

does not know whether or not it will have the opportunity to move (which occurs with

probability λ), and what the preference shock will be. Thus we can rewrite the equation

above as:

Vg(z, t) = Ug(z, t) + [(1− ρ)(1− δ)]
{

(1− λ)Vg(z, t+ 1) + λEξi

[
maxi ξiκg,iVi(z, t+ 1)

]}
To simplify notation define Vgi,t+1 = κg,iVi(z, t+ 1). Since ξi follows a Frechet distribution

with shape parameter ν and scale parameter9 s = Γ−1
ν , we can find an expression for:

F̃ (y) = P

(
maxi{ξiVgi,t+1} ≤ y

)
= P

(
ξ1 · Vg1,t+1 ≤ y ∩ . . . ∩ ξG · VgG,t+1 ≤ y

)
= P

(
ξ1 ≤

y

Vg1,t+1

)
· · ·P

(
ξG ≤

y

VgG,t+1

)
= exp

(
− (

y

s · Vg1,t+1
)−ν
)
· · · exp

(
− (

y

s · VgG,t+1
)−ν
)

= exp

(
−
(
y

s

)−ν
·
∑G

i=1(Vgi,t+1)ν
)

Notice we can rewrite this as:

F̃ (y) = exp

(
−
[

y

s · Φ

]−ν)

where Φ = [
∑G

i=1(Vgi,t+1)ν ]
1
ν . Thus y ∼ Frechet(s · Φ, ν) and therefore:

Eξi [maxi ξiVgi,t+1] = s · Φ · Γν

=

[∑G
i=1(Vgi,t+1)ν

] 1
ν

9Where Γν = Γ(1 − 1
ν

).
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where Γν = Γ

(
1 − 1

ν

)
. Also note that, for any destination d ∈ G (and dropping t for

simplicity), migration flows are given by:

mgd(z, t+ 1) =
[Vgd,t+1]ν∑
i[Vgi,t+1]ν

So the expectation above becomes:

Eξi [max
i
ξiVgi,t+1] =

[
[Vgd,t+1]ν

mgd(z, t+ 1)

] 1
ν

= mgd(z, t+ 1)−
1
ν · Vgd,t+1

Note that, since this applies ∀d ∈ G, we can express the expectation as:

Eξi [max
i
ξiVgi,t+1] =

1

G

∑
i

mgi(z, t+ 1)−
1
ν · Vgi,t+1

Hence the Bellman in discrete time is given by:

Vg(z, t) = Ug(z, t) + [(1− ρ)(1− δ)]
{

(1− λ)Vg(z, t+ 1)

+λ
1

G

∑
imgi(z, t+ 1)−

1
ν · κgiVi(z, t+ 1)

}
To convert to continuous time, consider a period of length ∆ to the Bellman becomes:

Vg(z, t) = Ug(z, t) + [(1−∆ρ)(1−∆δ)]

{
(1−∆λ)Vg(z, t+ ∆)

+∆λ
1

G

∑
imgi(z, t+ ∆)−

1
ν · κgiVi(z, t+ ∆)

}
After multiplying everything, substracting Vg(z, t), dividing by ∆ and taking the limit

∆→ 0 we obtain the HJB in equation (16):

(δ + ρ+ λ)Vg(z, t) = Ug(z, t) + V̇g + λ

[
1

G

∑
imgi(z, t)

− 1
ν · κgiVi(z, t)

]
A.1.2 Derivation of the Kolmogorov forward equation

By definition the distribution of efficiency units z at any point in time t and region g is

given by:

Ψg(z, t) = P{Z ≤ z, g(t) = g}

Therefore, the number of people in region g with efficiency units less than or equal to z will

be given by Ng(z, t) = Ψg(z, t)N(t), so that:

Ṅg(z, t) = Ψ̇g(z, t) ·N(t) + Ψg(z, t) · Ṅ(t)
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On the other hand, in discrete time, after each interval of length ∆, Eg(t) workers are born

each period, which draw their skills from the distribution F (z). Furthermore, a share of

(1 − δ) households remain alive in t + ∆. Of those, λ will not be able to move whereas

(1−λ) from other regions can migrate to g from i ∈ G, and do so with probability mig(z, t+

∆). Consequently, the total share of workers with skill z moving from i to g is given by

∆λmig(z, t+ ∆).

Combining all these elements, we obtain the following evolution of Ng(z, t):

Ng(z, t+ ∆) = ∆Eg(t) · F (z) + (1−∆δ)

[
(1−∆λ)Ng(z, t) + ∆λ

∑
imig(z, t+ ∆)Ni(z, t)

]
Subtracting Ng(z, t), dividing by ∆ and taking the limit ∆→∞ we have:

Ṅg(z, t) = Eg(t) · F (z)− δNg(z, t)− λ
[
(1−mgg(z, t))Ng(z, t)−

∑
i 6=gmig(z, t)Ni(z, t)

]
where Ψ̇ = ∂tΨ. Finally, combine both expressions for Ṅg(z, t) and take derivatives with

respect to z to obtain the Kolmogorov forward equation in equation (18):

ψ̇g(z, t) =
Eg(t)

N(t)
· f(z)− δψg(z, t)

− λ

[
(1−mgg(z, t))ψg(z, t)−

∑
i 6=gmig(z, t)ψi(z, t)

]
− ψg(z, t)

Ṅ(t)

N(t)

where z̄ is the maximum productivity level.

A.1.3 Detrended Variables and Balanced Growth Path

For any variable y(t), denote the detrended version as ỹ(t) = e−γyty(t), where γy is the

growth rate of y, and in the case of population, set N(0) = N0 as its initial condition. Also,

let ȳ be the same variable along the balanced growth path. In a BGP, the productivity

distribution is stationary and the mass of intermediate firms grows at a common constant

rate γM = Ṁg(t)/Mg(t). In this case, the evolution of Mg(t) implies γM = Fg(t) ·Mg(t)
η

and therefore the growth rate γL is determined by combining this with the production labor

demand equation:

γM = Fg(t) ·Mg(t)
η

γM =

(
Lyg(t)

εMg(t)

)
Mg(t)

η

γM =

(
1

ε

)
L̃yg(t) · (M̃g(t))

η−1e[γL+γM (η−1)]t
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which implies γL = γM (1− η). Recall from the labor market clearing condition:

Lg(t) = Lyg(t) + Lhg (t)

so that:

Lyg(t) = 1− (1− θ)(1− α)Lg(t) = [α+ θ(1− α)]Lg(t)

So that:

γM =

(
α+ θ(1− α)

ε

)
Lg(t) · (M̃g(t))

η−1

From the definition of Lg(t) we can find γL:

Lg(t) =

(
N(t) ·

∫
Ωz
zβψg(z, t)dz

) 1
β

L̃g(t) · eγLt = e
1
β

(γN+γψ)t
(
Ñ(t) ·

∫
Ωz
zβψg(z, t)dz

) 1
β

which implies γL =
1

β
γN (we will see later that γψ = 0). We can use the solution for Ug(·)

from the static equilibrium to find detrended flow utility:

Ug(z, t) = Dg(t) · zβ ·
Γg
ΓU
·
(
πgg(t)

) α
1−σ
(
Mg(t)

) α
ε−1
(
Lg(t)

)(1−β)−θ(1−α)

Ũg(z, t)e
γU t = e[γM

α
ε−1

+γL((1−β)−θ(1−α))−γNφ]t

· DgÑg(t)
−φzβ · Γg

ΓU
·
(
πgg(t)

) α
1−σ
(
M̃g(t)

) α
ε−1
(
L̃g(t)

)(1−β)−θ(1−α)

which, along with the expressions γN = βγL and γL = γM (1− η), implies:

γU = [ α
ε−1 − (1− η)(β(1 + φ) + θ(1− α)− 1)]γM

Detrended Equations For the value function, recall that by definition in a BGP, Vg(z, t) =

eγvtṼg(z, t). To find the detrended HJB, we can then rewrite each element in the HJB:

(δ + ρ)Vg(z, t) = (δ + ρ)eγvtṼg(z, t)

Ug(z, t) = e[ α
ε−1
−(1−η)(β(1+φ)+θ(1−α)−1)]γM tŨg(z, t)

∂tVg(z, t) = γve
γvtṼg(z, t) + eγvt∂tṼg(z, t)

Combining all this into the HJB we obtain:

(δ + ρ)eγvtṼg(z, t) = e[ α
ε−1
−(1−η)(β(1+φ)+θ(1−α)−1)]γM tŨg(z, t)

+ γve
γvtṼg(z, t) + eγvt∂tṼg(z, t)

+ eγvtλ
∑

imgi(z, t)

[
δgi(z, t)Ṽi(z, t)− Ṽg(z, t)

]
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This implies:

γv =

(
α
ε−1 − (1− η)(β(1 + φ) + θ(1− α)− 1)

)
γM

which results in the detrended HJB:

(δ + ρ− γv)Ṽg(z, t) = Ũg(z, t) + ∂tṼg(z, t) + λ
∑

imgi(z, t)

[
δgi(z, t)Ṽi(z, t)− Ṽg(z, t)

]
For the detrended Kolmogorov equation consider each element of the equation:

∂tψg = γψe
γψtψ̃g(z, t) + eγψt∂tψ̃g(z, t)

Eg(t)

N(t)
f(z)− δψg(z, t) =

Ẽg(t)

Ñ(t)
f(z)− δψ̃g(z, t)eγψt

λ(1−mgg(z, t))ψg(z, t) = λ(1−mgg(z, t))ψ̃g(z, t)e
γψt

λ
∑

i 6=gmig(z, t)ψi(z, t) = λ
∑

i 6=gmig(z, t)ψ̃i(z, t)e
γψt

Ṅ(t)

N(t)
ψg(z, t) =

(
γ̃N (t) + γN

)
ψ̃g(z, t)e

γψt

where γ̃N (t) = ˙̃N(t)/Ñ(t) is the growth rate of the detrended total population. We can

obtain this result since N(t) = Ñ(t)eγN t, which implies:

Ṅ(t) =
dN(t)

dt
=
dÑ(t)

dt
· eγN t + eγN tγN Ñ(t)

so that:
Ṅ(t)

N(t)
=

˙̃N(t)

Ñ(t)
+ γN

Combining them all we obtain:

γψe
γψtψ̃g(z, t) + eγψt∂tψ̃g(z, t) =

Ẽg(t)

Ñ(t)
f(z)− δψ̃g(z, t)eγψt

− λ[1−mgg(z, t)]ψ̃g(z, t)e
γψt

+ λ
∑

i 6=gmig(z, t)ψ̃i(z, t)e
γψt −

(
γ̃N (t) + γN

)
ψ̃g(z, t)e

γψt
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which implies that γψ = 0. Thus, using this, we obtain the detrended Kolmogorov equation:

∂tψ̃g(z, t) =
Ẽg(t)

Ñ(t)
f(z)− δψ̃g(z, t)

− λ

[
(1−mgg(z, t))ψ̃g(z, t)−

∑
i 6=gmig(z, t)ψ̃i(z, t)

]
−
(
γ̃N (t) + γN

)
ψ̃g(z, t)

Detrended growth Note that, using population dynamics, we can derive the detrended

growth rate. By definition:

Ṅ(t) =
∑
g

(Eg(t)− δ ·Ng(t))

Therefore:
Ṅ(t)

N(t)
=

∑
g(Eg(t)− δ ·Ng(t))

N(t)
=

∑
g Ẽg(t)

Ñ(t)
− δ

where the second equality follows from Eg(t) = eγN tẼg(t) and N(t) =
∑

gNg(t). Therefore,

combining this with equation above we have:

˙̃N(t)

Ñ(t)
=

∑
g Ẽg(t)

Ñ(t)
− δ − γN

BGP Equations In the BGP we have ỹ(t) = ȳ. Thus the HJB and Kolmogorov forward

equations become:

(δ + ρ− γv)V̄g(z) = Ūg(z) + λ
∑

i m̄gi(z)

[
δ̄gi(z)V̄i(z)− Ṽg(z)

]

0 =
Ēg
N̄
f(z)− (δ + γN )ψ̄g(z)− λ(1− m̄gg(z))ψ̄g(z) + λ

∑
i 6=g m̄ig(z)ψ̄i(z)

Note that along the BGP there is no net migration so that:

∑
g

∫
λ[1− m̄gg(z)]ψ̄g(z)dz =

∑
g

∫
λ
∑
i 6=g

m̄ig(z)ψ̄i(z)dz

Also recall that N(t)Ψg(z̄) = N(t)
∫
ψg(z, t) = Ng(t) so that Ψ̄g(z̄) = N̄g/N̄ . Thus, to

derive the equilibrium population growth rate γN , integrate the BGP KF equation over z
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and sum across regions g to obtain:

0 =
∑

g

Ēg
N̄
−
∑

g δ
∫
ψ̄g(z)dz − γN

γN =
∑

g

Ēg
N0
−
∑

g δ
N̄g

N0

γN =
∑

g

Ēg
N0
− δ

where we also use the fact that
∫
f(z)dz = 1 and imposing N̄ = N0.
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B Computation Appendix

Algorithm 1: Balanced Growth Path

Data: parameters {Θ,ΘG}; productivity distribution f(z)
Result: solution functions {V̄ , ψ̄, m̄}
Initialize {W 0,L0,N0};
while not converged do

Use {W n,Ln,Nn} to compute shares πngd and flow utility Ūng (z) ;

Solve the HJB in equation (24). Recover migration shares m̄n
gd(z);

Use m̄n
gd(z) to solve the Kolmogorov forward equation (25). Recover the

distribution ψ̄ng (z);
Use ψ̄ng (z) to compute labor supply and population:

L̂ng = N ·

∫
Ωz

zψ̄ng (z)dz N̂n
g = N ·

∫
Ωz

ψ̄ng (z)dz

then use {L̂n} to compute the wages that satisfy:

Ŵn
g L̂

n
g =

∑
d

πngdŴ
n
d L̂

n
d

this is the trade balance in equation (12) ;

if {W n,Ln,Nn} close to {Ŵ n, L̂n, N̂n} then
converged;

else
compute {W n+1,Ln+1,Nn+1} as linear combination of old and new values;

end

end
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Algorithm 2: Transition Dynamics

Data: endpoint solutions {V̄ 1, ψ̄1, m̄1} and {V̄ 2, ψ̄2, m̄2}; parameter series
{Θ(t),ΘG(t)}; productivity distribution f(z)

Result: solution functions {Ṽ (t), ψ̃(t),m(t)}
Initialize {W 0(t),L0(t),N0(t)};
while not converged do

Use {N j(t)} to compute total population N̂ j(t);

Use {Lj(t)} to compute a transition path {M̂ j(t)} according to equation (20)
using the initial condition from the first endpoint;

Use {W j(t),Lj(t),N j(t)} and {M̂ j(t)} to compute shares πjgd(t) and flow

utility Ũ jg (t);
Solve the HJB equation (21) by iterating backwards from V̄ 2. Recover
migration shares mj

gd(z, t);

Use mj
gd(z, t) to solve the Kolmogorov forward equation (22) by iterating

forward from ψ̄1. Recover ψjg(z, t);

Use ψ̃jg(z, t) to compute labor supply and population for each t:

L̂jg(t) = N̂ j(t) ·
∫

Ωz

z · ψ̃jg(z, t)dz N̂n
g = N̂ j(t) ·

∫
Ωz

ψ̃ng (z, t)dz

then use {L̂j(t)} to compute wages that satisfy:

Ŵ j
g (t)L̂ng (t) =

∑
d

πjgdŴ
j
d (t)L̂jd(t)

this is the detrended trade balance equation.;

if {W j(t),Lj(t),N j(t)} close to {Ŵ j(t), L̂j(t), N̂ j(t)} then
converged;

else
compute {W j+1(t),Lj+1(t),N j+1(t)} as linear combination of old and new
values;

end

end
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C Estimation Appendix

Table 5 Regression of Prices on Distance

log pi,m,n,j,t

(1) (2) (3) (4)

ζτ 0.283*** 0.169*** 0.283*** 0.168***
(0.001) (0.001) (0.001) (0.001)

Same State -0.467*** -0.210*** -0.467*** -0.211***
(0.002) (0.002) (0.002) (0.002)

Orig. State X
Dest. State X
Orig. State * Prod. X
Dest. State * Prod. X
Orig. State * Quarter X
Dest. State * Quarter X
Orig. State * Prod. * Quarter X
Dest. State * Prod. * Quarter X

N 10,526,115 10,526,114 10,526,115 10,525,995
R2 0.114 0.396 0.115 0.400
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